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A Stability Analysis for Tethered Aerodynamically Shaped
Balloons

JAMES D. DELAURIER*
G. T. Schjeldahl Company, Northfield, Minn.

This work investigates the dynamic stability of tethered, aerodynamically shaped balloons by considering the
system to pose essentially a cable problem, with the balloon's dynamics giving end and auxiliary conditions. This
physical model gives a first-order problem in a sequence of partial differential wave equations with nonhomo-
geneous boundary conditions. Further, these equations uncouple to give a "lateral" problem and a "longi-
tudinal" problem—as in first-order airplane dynamics. The solution of either problem takes the form of a
transcendental characteristic equation for the stability roots, from which these roots are extracted by using an
electronic computer and a roots locus plot. Further, this theory was applied toward the development of a high-
performance tethered balloon design, and the results showed that good stability was attainable by the use of
large and aerodynamically efficient fins.

Introduction

IN 1915, Bairstow et al.,1 while developing a theory for
analyzing and predicting the stability of tethered balloons,

discovered that an adequate mathematical representation leads
to equations that are beyond the realm of easy solution by
hand. Thus the design of stable tethered balloons so far has
depended mostly on trial and error. However, interest in
recent years in the use of tethered balloons as inexpensive
station-keeping instrument platforms has again given rise to
the need for an accurate stability theory. Further, with the
use of the electronic computer, physical models even more
complex than Bairstow's may now be handled with confidence.

A tethered balloon is physically and mathematically only a
slight specialization of a general cable-body system, and, as
such, there has been a fair amount of theoretical and experi-
mental work on towed and tethered body stability. Most
theories have used the approach of treating the cable-body
system as being essentially a rigid-body dynamics problem,
in which the cable is accounted for by force conditions at its
body attachment point. These force conditions take the
form of cable "stability derivatives," and are derived from
the assumption that the cable is in an instantaneous equilib-
rium state with respect to certain of its end conditions. For
instance, Glauert2 based his analysis of a towed body on the
cable end conditions of displacement. Similarly, Bryant et
al.3 used the same conditions for their analysis of tethered
lifting bodies. One of the most sophisticated examples of
this approach is given by Maryniak10 in his study of towed
glider stability, in which he considered conditions for a cable
with tangential and normal aerodynamic forces. The cable
stability derivative approach has the definite merit of giving
linear ordinary differential equations with constant coefficients
for describing the system's first-order behavior, from which
detailed information on the system's motions may be ob-
tained, as was done by Redd et al.12 But such a physical
model does not contain the basic mechanical nature of a
cable-body system, especially if the time for a displacement
"signal" to travel the length of the cable is of the same order
of magnitude as the system's longest period—as may be the
case for towed decelerators or high-altitude balloons. A more
fundamental approach is to treat the system as a cable problem
in which the body supplies certain end conditions. This phys-
ical model is much more general, and contains the previous
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mode of analysis as a special case. Basing his analysis on
this approach, DeLaurier4'5 obtained a solution for the first-
order stability of a cable-body system, and verified this
solution with experiments. This theory has since been used
for the stability analysis of tethered balloons, and the balance
of this article is devoted toward elucidating the theory and
its application.

Theoretical Stability Analysis

Types of Tethered Balloon Stability
As an important preliminary to this paper, one must note

that limit-cycle oscillations are a characteristic of systems
which have mechanical constraints on their moving com-
ponents, such as cable-body systems; further, such systems
may have first-order instability, but likewise have limit-cycle
stability. This is in direct contrast to free systems such as
airplanes, where first-order instability, if unconnected, almost
always leads to complete disruption of the system's original
steady motion. However, first-order stability for a free-
flying vehicle, even with nonfirst-order disturbances, almost
always guarantees its stability. This is also true for a cable-
body system. Thus one sees that a first-order stability
analysis on cable-body systems is necessarily conservative and
is thereby of considerable value toward designing a strongly
stable system.

Equations of Motion
As mentioned in the Introduction, the physical model for

this analysis has been to consider the cable-body system as
being essentially a cable problem, in which the body provides
end and auxiliary conditions. To this end, the equations of
motion for a cable segment were derived based on the follow-
ing assumptions: 1) The cable segment has uniform density
and geometry along its length. 2) The segment is perfectly
flexible and inextensible. 3) The segment has a cross section
that is round, or nearly so—such as stranded wire. 4) The
segment is totally immersed in a homogeneous uniform fluid
stream. 5) The Reynolds number of the segment's crossflow
is subcritical. 6) The cable segment is nearly straight over
its entire length. 7) The magnitude of the segment's per-
turbed displacement is small compared with its length.
7) The magnitude of the segment's perturbed velocity is small
compared with the freestream velocity. 9) The segment's
equilibrium tension is nearly uniform and linear along its
length, and is large compared with the perturbed tension
contribution.
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Thus, according to these assumptions, the equations of
motion for the segment are

D2y - C2(d2y/ds2)

D2l - C2(d2[/ds2)

0 (1)
= 0 (2)

= 0 (3)

where C, ki through &7 = nondimensional constants involving
the cable segment's pjiysical, aerodynamic, and geometrical
properties; |, y, and £ = nondimensional perturbation values
of the cable's coordinates (see Fig. 1); S = nondimensional
cable length coordinate; and D() and D2() = nondimensional
time derivatives.

Now, in order to treat a cable with a general curvature and
tension variation, an important concept was introduced: the
complete cable may be dynamically represented by a number
of the first-order segments—each joined one to the next by
matching conditions of displacement and slope. Mathe-
matically, this means that the general cable is divided into n
segments, where the segment lengths are chosen short enough
such that the assumptions, 1-9, could be considered to apply
to each. Further, a given segment / is matched to the next
segment i + 1 by the conditions

(5)

(6)

(7)

where / = 1, 2, . . . ,« — 1; L£ = length of cable segment; and
£ = nondimensional time.
Also, note that for the fixed end condition of the first segment,
one has

(8)
(9)

Further, end conditions of the last segment / = n are given
by the body's equations of motion. These equations were
derived subject to the following assumptions: 1) The body is
rigid. 2) The body is completely immersed in a homogeneous
fluid stream. 3) The body is symmetric with respect to the
HI, n3 plane (see Fig. 2). 4) The cable is free to pivot at the
attachment point. 5) The magnitude of the body's perturbed
rotations is small. 6) The magnitude of the body's angular
velocities is small compared with the ratio of the freestream
velocity divided by the body characteristic length. 7) The
magnitude of the body's perturbed velocities is small com-
pared with the freestream velocity. 8) Aerodynamic effects
may be represented by the concept of stability derivatives.
The resulting equations, which are derived at length in Refs. 4
and 5, are given in the Appendix.

Now, when the body equations are rearranged, the cable
contribution terms are either eliminated or isolated, and these

Fig. 2 Body coordinate system.

equations are thus put into their most convenient form for
use as end conditions and auxiliary conditions

(10)

(7T45D2

(7749Z)2

-7T58D)y + (i
(77-59

-(7T47/)2 + 7

_(_ / j e z02 +

TgD + 7T10)9 +

D2 + 7T6QD + 7T12)0

r48Z) + 7r33)0=0

7T2 3 D + 7T24)(p +

(ID

(12)

(<7T53D2 + 7T

[(Cm - fxx)D2 CiPD - Clv sin 0o

27)f = Q (13)

siny cos00]
9 -f (7755/)2 + 7T56D+Civ)f = Q (14)

where 7r23 through 7760 = nondimensional constants involving
the coefficients of the body equations.

These equations, along with the cable and matching Eqs.
(1-9), constitute a completely posed boundary-value problem
for the system's motion. Moreover, note that the lateral
motion and the longitudinal motion are uncoupled in this
first-order analysis ; that is, the equations for y, $ and <p are a
complete set, as are those for C and 9. Thus, the system's
longitudinal stability may be solved for, separate from its
lateral stability.

Solution of the Stability Equations

The boundary-value problem for the longitudinal stability
modes is defined by the cable Eq. (3), along with the end
conditions, Eqs. (4, 6, 8, and 10), and the auxiliary condition,
Eq. (12). Thus, one must deal with a sequence of homo-
geneous partial differential wave equations with nonhomo-
geneous end conditions, which is considerably more compli-
cated than the set of homogeneous ordinary differential
equations of airplane stability analysis.6 However, drawing
on the nonhomogeneous partial differential equation tech-
niques in Berg and McGregor,2 one may obtain a formal
solution by the method of separation of variables. Further,
noting that all equations are linear and have constant co-
efficients, one then assumes a perturbed harmonic motion.
Thus,

Usij) = Zt(st) exp(af ), i = 1 , 2, . . . , n (15)

Upon substituting this into the cable Eq. (3), and matching
according to the end conditions, Eqs. (4, 6, and 8), one obtains

Fig. 1 Cable coordinate system.

Zt($t) =
where

(16)

(17>
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Ll [A +0 /l~T [A'-' + "'-1 \
«KQ.-.)+B-ie*P(-Q'-i)
expcn,,,) - ei

(« = 2,3, ...,«) (18)

AI = Q£ =

and (ZOi is a constant.
Now, in the spirit of the harmonic analysis, assume that

= 0exp(af) (19)

where 0 is. a constant. Substituting this and Eqs. (15-18)
into the end and auxiliary conditions, Eqs. (10) and (12), for
the last segment / — n one obtains the following transcendental
equations :

exp (AB) [exp(nn) - Qn exp(-O,)] x

(7T42CT2 -f 7743(7 + 7744)0=0 (20)

exp(An)[exp(nn) - Qn exp(-nn)](7745(r2 -f 7r46cj)(Zn)1 +
(7T47(72-{-7748<7-h7733)0=0 (21)

These equations are two linear homogeneous equations in
(Zn)i and 0. Thus, it follows that an equation for a (charac-
teristic equation) may be obtained by putting Eqs. (20) and
(21) into a determinant, and setting it equal to zero.

The characteristic determinant for the lateral stability roots
may be found in a similar fashion. Starting from the bound-
ary-value problem as defined by the cable Eq. (2), the end
conditions Eqs. (5, 7, 9, and ll), and the auxiliary conditions,
Eqs. (13) and (14), one may proceed in a similar fashion as for
the longitudinal case. To this end, a harmonic solution for yt
is assumed

yt(stj) = Yt(st) exp(Af), i = 1, 2,..., n (22)
Upon substituting this into the cable Eq. (2), and matching
according to the end conditions, Eqs. (5, 7, and 9), one obtains

Yt(st) =
where

exp )-Piexp(-A£5£)] (23)

Pi = 1 (24)

_i) + Pi_! exp(-Af_1)

'"-1
,-! exp(-At-_1) -ri + A,

rf - (&7)£/2C<2, A, = [IV + (A2 +

(25)

and (rf)i is a constant.
Further, consistent with the harmonic assumption, Eq. (22),

assume that
and 9 = €> exp(Af) (26)

where T and O are constants. Substituting this, and Eqs.
(23-25) into the end and auxiliary conditions for the last
segment i = n one obtains three linear, homogeneous equa-
tions in (rn)i, *F, and <£. Again, as with the longitudinal
case, these may be set into a determinant to yield the charac-
teristic equation for A.

G;-0

Fig. 3 Typical
longitudinal roots locus

plot.

FP-O

Fig. 4 Typical
lateral roots locus

plot.

Note that the characteristic roots a and A are, in general,
complex

= Ar+yA;, where 7 = (— 1)1/2 (27)and

Thus, the characteristic equations are transcendental and com-
plex, and there is no general closed form solution for the roots.
Therefore, a graphical root extraction method was used,
namely, roots locus plots. To implement this, Eq. (27) was
substituted into the characteristic equations, and then ex-
panded into real and imaginary parts. The characteristic
equations then took the form

G>(ov,a/) + jG./(ov,cr/) = 0 (28)
(29)

where G>(OV,OJ) and Fr(Ar,A./) are the real parts of the charac-
teristic equations, and (j/(ov,c7./) and F/(Ar,A;) are the imagin-
ary parts of the characteristic equations.

This then forms the basis for the roots locus plot, in that,
first, the root pair is sequenced through a range of values,
and for each of these values, the real and imaginary part of
the characteristic equation is calculated. Next, for each root
pair for which either the real part or the imaginary part of the
equation equals zero, this root pair is marked on a coordinate
system. These points then define curves for which either the real
or the imaginary part of the characteristic equation equals zero,
and the intersection of these curves then defines the charac-
teristic roots. Examples of roots locus plots are shown in
Figs. 3 and 4 for longitudinal and lateral cases, respectively.

Application of the Theory

The theory was compared with wind-tunnel experiments on
a kite5 and a suspended finned body.4 For both cases, theory
and experiment compared very well, and it was thus felt that
the theory was sufficiently verified so that it could be directed
toward its primary purpose, the prediction of a cable-body
system's stability characteristics. The system, in this case,
is a tethered balloon, shown in Fig. 5. Note that its charac-
teristic length b is the hull length, and the characteristic area
is the hull volume to the 2/3 power, i.e.

b = 138.0 ft and S = (2.0 x 105)2/3 - 3420.0 ft2 (30)

Further, the balloon's inertial properties were found from
finite element computation, based on the measured masses of
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Fig. 5 Tethered balloon layout.

the component parts. Since the enclosed air and helium
change their density and mass center location with altitude,
their contribution to the inertial properties had to be calculated
for each cable length and wind speed combination. For ex-
ample, the total inertial properties when cable length L
equals 4000 ft and wind speed U equals 20 fps are m — total
balloon mass = 386.5 slugs; Ixx = moment of inertia about the
x axis = 8.906 x 104 slug-ft2; Iyy = moment of inertia about
the y axis = 4.7801 x 105 slug-ft2; Izz = moment of inertia
about the z axis = 4.2255 x 105 slug-ft2; Ixz= product of
inertia with respect to the x — z axes = 5.681 x 104 slug-ft2,
where the mass center location (see Fig. 5) is

Lcm = 72.65 ft and Hcm = -6.16 ft (31)
As for the cable, it is a smoothjacketed NOLARO line

(manufactured by the Columbian Rope Company) with the fol-
lowing properties: R = radius = 0.0323 fit; p = mass/length =
0.00621 slug/ft, and its aerodynamic coefficients are obtained
from Hoerner9

Cao = zero angle drag coefficient = 0.035
K = cross-sectional drag coefficient = 1.19 (32)

•8T

.7-

1000 2000
DOWNWIND DISPLACEMENT (ft.)

3000

Fig. 6 Tethered balloon aerodynamic characteristics.

Fig. 7 Cable-balloon system equilibrium configuration.

Next, the system's equilibrium configuration was found from
theory. For the balloon itself, wind-tunnel tests on a rigid
model8 gave the aerodynamic inputs (see Fig. 6) for the force
and moment balance equations, which, through an iterative
computer solution, gave the balloon's angle-of-attack a as a
function of its altitude and wind speed. Further, the cable
equilibrium equations were solved by a finite difference
method, as described in Ref. 4, to yield the cable profile and
tension variation. Thus, by coupling the balloon and cable
equilibrium solutions together it was possible to solve for the
entire system's equilibrium configuration as a function of cable
length and wind speed. An example of this result for
L = 4000 ft is shown in Fig. 7.

Now, the stability derivatives were found from a combina-
tion of experiment8 and theory.4'11'13 Since the balloon's
mass center and angle-of-attack are functions of the wind
speed and cable length, the derivatives were written in a very
functional form, and values were calculated for each given
situation. For example, the longitudinal stability derivatives
for L = 4000 ft and U = 20 fps are

(CXu)Q = 0, (C^Oo = -0.24, (Czu)0 = 0, (Czai)o = 0
(Cm»)o=0, (Cmfll)0=0.0156, (CXw)o = -0.070, (CXa3)0=0
(Czw)o = -1.967, (CZa3)o = -1.32, (Cmw)0 = -0.189

(C««3)o= 0.121, (Gr,)0=0, (C2,)o =-1.037
(Cw«2)o = -0.089, (Cmq)o = -0.353 (33)
where the subscript ( )0 denotes values taken with respect to
the wind-aligned body-fixed axes of usual airplane convention
(see pp. 103-104 of Ref. 6).

Also, the lateral stability derivatives for L = 4000 ft and
t/ = 20fpsare

(CV.)0 = -1.91, (Cy.2)0 = -1.32,- (Cw)p= 0.117
(Cnfl2)0 = -0.121, (Clv)0 = -0.090, (C,fl2)0 = -0.086
(Cyr)0 = 1.264, (Cnr)0 = -0.533, (Cna3)o = -0.089
(C,r)0= 0.0271, (CVP)0 = 0.133, (Cnp)0 == - 0.056
(C,p)o = -0.096, (C,.0o =-0.006 (34)

The geometrical, inertial, and aerodynamic information
contained in Figs. 5, 6, and 7 and the data in Eqs. (30-34)
provided the necessary inputs to the stability analysis, and
the results are shown in Figs. 8-11. Of all the stability modes
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Fig. 8 System longitudinal frequency of oscillation.
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Fig. 10 Longitudinal stability map.

given by the theory, there was consistently one dominant
least stable mode whose frequency was of the order of magni-
tude of the "pendulum" frequency

pendulum frequency (rad/sec) ^ (cable tension at body)1/2/mL
This result was confirmed by experimental observation in
Refs. 4 and 5. Therefore, the characteristics of this mode
only, are shown in the results.

Considering, first, the frequency plots (Figs. 8 and 9), one
sees that these generally follow the trend of increasing fre-
quency with increasing U and decreasing L. The exception
occurs at the high values of U in the longitudinal plot. For
this case, theory predicts such strong stability with increasing
wind speed that the motion approaches the critically damped
situation in which oscillation entirely disappears. Otherwise,
the lateral and longitudinal frequency plots are very similar.
This is not the case for the stability maps.

Noting, first, the longitudinal stability map, Fig. 10, one
sees that the system is stable throughout most of the region
considered. However, there exists a narrow region of in-
stability at 0 < U < 20 fps for all cable lengths. This is due
primarily to an interaction between the balloon's lift and drag,
where the lift acts as a forcing function and the drag acts as a
damping function, and thereby, a high lift/drag ratio aggra-
vates the situation, as with airplane "phugoid" oscillations.
Further, this type of motion was experimentally observed
in Ref. 5.

Nevertheless, a high lift/drag ratio is highly desired for a
tethered balloon's over-all performance. Moreover, the small
unstable region is predicted by a conservative first-order
theory, which precludes the fact that experience with tethered
balloons12 indicates that only limit cycle oscillations will
occur, thus making this region, for operational purposes,
acceptably stable.

.20--
.18-

"I

>-

.14-

.12-

.10-
2 .08-
CE

**• .06-

2 -04-

L=500ft.

20 40 60 80 100 120 140 160
WIND SPEED, U (ft/sec)

The lateral stability map (Fig. 11) shows the system to be
stable throughout the entire range of wind speeds and cable
lengths considered, which is considerably more stable lateral
behavior than is usually the case with finned axisymmetric
bodies.4 This is due greatly to the balloon's large, efficiently
shaped vertical fins. Although a cable-body system's dynamic
stability is governed by a complicated interaction of its
physical and aerodynamic properties, strong contributions to
a finned balloon's stability are given by large positive values
of the yawing derivative (Cnv)o and large negative values of the
side-slip and rotary yawing derivatives (CYl>)o and (Cnr)o
respectively. A large and properly designed vertical fin
enhances these values, and this consideration gave rise to the
fin design of this balloon.

Conclusions

Within the limits of the theory's assumptions, it is felt that
this stability analysis provides a reasonable method for pre-
dicting the first-order motion of tethered, aerodynamically
shaped balloons, as well as that for a variety of other cable-
body systems, as evidenced by Refs. 4 and 5. Because the
general cable equations of motion were considered, one need
not place any restrictions on the cable's first-order motion;
i.e., no "instantaneous equilibrium" physical model is
assumed, such as in Ref. 3. Thus, this theory may be applied
readily to systems in which the time of displacement signal
propagation along the cable length is of the same order of
magnitude as, or greater than, the system's largest period of
oscillation. Examples of such systems include towed re-
entry decelerators, as well as high-altitude balloons.

The essential feature of the theory is that the cable-body
system is treated as a segmented cable problem, where the
body provides end and auxiliary conditions for the last seg-
ment. This physical model can readily lend itself to some

IOOOOT

c sooo-

6000-

4000

2000-

NO. OF CYCLES TO 1/2
AMPLITUDE

N 1/2= 1.0

Fig. 9 System lateral frequency of oscillation.

.20 40 60 80 100 120
WIND SPEED, TJ (ft/sec)

Fig. 11 Lateral stability map.

140 160
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interesting applications. For instance, the problem of two
bodies connected by a cable may be treated by replacing the
fixed end conditions at the first segment with a set of body-
derived end and auxiliary conditions, similar to those for the
last segment. Finally, another application would be to con-
sider a finite body midway along the cable. In this case, the
end conditions on the two adjacent cable segments are found
from the equations of motion of the midcable body.

Appendix: The Body Equations of Motion

From Refs. 4 and 5, the body's equations of motion are

{[(Cxai - p) COS00 + Cza3 sin00] D2 +
(CXu cos00 + Cx* sinflo) D}x +

{[Cxa3 cos0o - (C^i - p) sm00] D2 +
(CXw cos0o - CXu sinflo) D} z +

{CXqD - cos0o [CXw + (6 - mg) - T0 (dz/ds)a] +

fo[(8z/ds)a sin00 - (dx/8s)a cos00] = 0 (Al)

[(CYa2 - p)D2 + CYVD] y + [(cos00 CYr - sin00 CYp)D +

{CYP D - CYV sm00 + [(B -mg)-T0 (dz/ds)a] cos00 -
f0 (dx/8s)a sin00} 9 - f o (ty/ds) « = 0 (A2)

{[(Czas - p) COS00 - Czai sm00] D2 +
(CZw cosflo - CZu sm00) £>} z +

{[Cz«i cos0o + (Czas -/A) sin00] £>2 +
(CZu COS00 + CZw sin00) D} x +

{CZ« D - [CZW + f o (3*/&)J COS0Q -

[0 -mg)-TQ (dz/ds)a\ sin00} 5 -
fo [(0*/&)« cos0o + (ftc/fly)- sinflo] - 0 (A3)

(Ci«2
sin

(Cir cos^o - CJp sin00) /> 4- GJ 0 = 0 (A4)
[(Cmfl3 cos^o - Cmfll sin^o) D2 +

(Cmw cos^o - Cmu sin^o) I>] f +
[(Cmfli

((Cma2 - /,,) D2 - {[Cmw -I- JiJft siny + RafQ (dz/ds)a] x
cos d0 - [RB cos y + jR«f0 (Sf /aj) a] X

sin00}) - ^«f o [(8x/ds), sin00 + (Sz/aj)a cos 00] = 0
(A5)

(Cna2 D2 + Cnu)/)) >> -f {[(Cna3 - /„) cosl9o + iX2 sin(90] D2 +
(C»r cos<90 - Cnp sin<90) Z) -f [G,* - ^a^o (^/^)fl]> ^ +
{/« />2 + Cnp D -f [./?£ cosy + Rafo (dz/ds)a] cos 00 -

[CM ~ Rafo (dx/ds)a] Sin00} £ + ^a^O (^/^)« = 0 (A6)

/\
where 5 = nondimensional body buoyancy force; mg = non-
dimensional body weight; Cx,Cy,Cz = aerodynamic force

coefficients; G,Cm,Cn = aerodynamic moment coefficients;
ixx.iyyjzzjxz = nondimensional body inertias; R = nondimen-
sional distance^from the body mass center to the body buoy-
ancy center; ^fl = nondimensional distance from the body
mass center to the cable attachment point; s = cable length
coordinate; T0 = nondimensional cable tension at the attach-
ment point; x,y,z = nondimensional perturbations of the
body's coordinates; x,y,z = cable equilibrium coordinates at
the attachment point; x,y,z = cable perturbed coordinates at
the attachment point; y = angle between R and Rfl as shown
in Fjg. 2; 60 = equilibrium angle between ground and Rfl;
<p,0,0 = perturbed Eulerian angles of the body; and the sub-
scripts ( )fl = reference to the attachment point; ( )fll,( )fl2,
( )fl3 = derivatives with respect to the nondimensional linear
acceleration components, dl, d2, and #3; ( )«i,( )«2,( )«3 = de-
rivatives with respect to the nondimensional angular accelera-
tion components, al, a2, and a3; ( )p,( )fl,( )r = derivatives
with respect to the nondimensional angular velocity com-
ponents, p, q, and r; ( )„,( )y,( )w = derivatives with respect to
the nondimensional velocity components, M, v, and w.
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